
REPRINT

D
E

PA

RTMENT OF THE NAV
Y

N
AVA

L RESEARCH LABORATO
R

Y
A Pump for Rapid, Reliable, Secure Communication

Myong H. Kang and Ira S. Moskowitz

FROM:
Proceedings of the 1st ACM Conference on Computer & Communications Security, Fairfax, VA, Nov 3-5 1993,
pages 119-129, ACM Press.

CONTACT:
Myong H. Kang, Information Technology Division, Mail Code 5542, Naval Research Laboratory, Washington, DC
20375.

Ira S. Moskowitz, Information Technology Division, Mail Code 5543, Naval Research Laboratory, Washington, DC
20375.

E-MAIL:
mkang@itd.nrl.navy.mil
moskowit@itd.nrl.navy.mil

A Pump for Rapid, Reliable, Secure Communication

Myong H. Kang and Ira S. Moskowitz

Naval Research Laboratory

Information Technology Division

Washington, D.C. 20375

Abstract

Communication from a low- to a high-level system
without acknowledgements will be unreliable; with
acknowledgements, it can be insecure. We propose
to provide quanti�able security, acceptable reliability,
and minimal performance penalties by interposing a
device (called the Pump) to push messages to the high
system and provide a controlled stream of acknowl-
edgements to the low system.
This paper describes how the Pump supports the

transmission of messages upward and limits the capac-
ity of the covert timing channel in the acknowledge-
ment stream without a�ecting the average acknowl-
edgement delay seen by the low system or the message
delivery delay seen by the high system in the absence
of actual Trojan horses. By adding random delays to
the acknowledgment stream, we show how to further
reduce the covert channel capacity even in the pres-
ence of cooperating Trojan horses in both the high
and low systems. We also discuss engineering trade-
o�s relevant to practical use of the Pump.

1 Introduction

Currently many computer system users who deal with
con�dential/sensitive information use systems that are
dedicated to a high level of security, i.e., system-high
systems. All information residing in the system is
marked with the system high level, even if some of the
information is in fact innocuous. Sharing information
between di�erent security levels is quite cumbersome
in this kind of system, which impedes high speed data
transfer. Multilevel secure (MLS) systems promise to
ease this problem.
Unfortunately, the security constraints in MLS sys-

tems often damage overall performance. We propose
to add non-uniform random noise to response time to
permit a high degree of security, while maintaining ef-
�cient performance standards. This paper is a �rst
step in a research plan that we will eventually imple-
ment on an actual MLS system. We also plan to make
further study of our ideas through various simulations.
However, in this paper we present the system engineer
with some rules of thumb to get both security and
performance requirements within certain guidelines.
Let us consider a particular, either centralized or

distributed, MLS system where two processes (nodes),
one high and one low, are single-level processes
(nodes). Two kinds of communication can exist be-
tween these processes (nodes):

� The high process sends information to the low
process (this is sometimes called downgrading).

� The low process sends information to the high
process.

The �rst type of communication grossly violates the
Bell-LaPadula constraint [BeL76] that is used by most
of the existing MLS systems. The second type of
communication does violate Bell-LaPadula in a sub-
tle manner if acknowledgements of a message being
passed are provided to the low process. This, in fact,

119

results in a covert channel. In this paper, we only
consider the second type of communication, which we
refer to as a low-to-high communication. Most MLS
systems that are based on the Bell-LaPadula model
accomplish this low-to-high communication through
read-down or blind write-up. However, there are some
reliability problems in these methods.

In secure computer systems, in addition to secu-
rity, the following characteristics are required in most
communication protocols: (1) reliability1, (2) reason-
able performance, and (3) a reasonable way to collect
garbage. Sometimes the recoverability2 in the case of
system crash is a desirable feature. These are the goals
that our method achieves in a secure fashion.

The rest of the paper is organized as follows: In sec-
tion 2, we examine several communication methods
in detail and discuss some problems inherent in them.
A quasi-secure low-to-high communicationmechanism
that can achieve all of the above desirable properties
is introduced in section 3. Section 4 describes the rele-
vant security features of this mechanism. The capacity
of the covert channel is analyzed in section 5. Section
6 summarizes this paper.

2 Background and Motivation

In this section, we present several methods of inter-
process communication and show the di�culty in si-
multaneously achieving the goals in section 1.

2.1 A Non-Secure (Conventional)

Communication Protocol

Communication protocols used in non-secure com-
puter systems typically achieve reliability and reason-
able performance. They also contain a reasonable way
to collect garbage through the following typical sce-
nario that is shown in �gure 1.

1The communication is reliable if the source sends a message
then it knows that either the message was delivered safely or
that it has to retransmit due to errors.

2The communication is recoverable if the message is delivered
to the destination even if the system fails, i.e., the system will

recover and continue to deliver from the failed point.

ACK/NAKACK/NAK

receivesend

Sources

Message
Concentrator

Store-
and-

forward
buffer

Destinations

Figure 1: Message passing from sources to
destinations.

If the message passing occurs in a distributed environ-
ment, then the source and destination processes may
reside in two di�erent computers and the message con-
centrator itself may be yet another computer; if the
message passing occurs in a single computer, then the
operating system may play the role of the message
concentrator (e.g., pipes in a UNIX system).
A typical message passing between a source and the

message concentrator, and the message concentrator
and a destination, goes as follows:

1. Establish transmission/connection.

2. Send a message.

� If the sender receives an ACK, then discard
the message from the sender's memory.

� If the sender either receives a NAK or times
out, then retransmit the message.

3. If there are more messages to send, then go to
step (2).

4. Signo�/Disconnection.

If the source sends messages faster than the destina-
tion can take (either due to slow processing or failure
at the destination) then the bu�er in the message con-
centrator may be �lled. The source then will be un-
able to send any more messages until the destination
empties some messages from the message concentra-
tor. We say that the source has been blocked in this
case. In a non-secure environment, determining the
size of bu�er that keeps the message blocking prob-
ability within speci�ed design limits has been widely
studied [Sch77].
In a secure environment, if the source, which resides

in a low system, sends messages to the destination,
which resides in a high system, then the sender can-
not use the same protocol because ACK/NAK arrival
times can be used to send signals covertly. The capac-
ity of this covert channel is analyzed in section 3.2.

120

2.2 Read-Down

Read-down allows the high level user/process (High)
to read the low level user's/process's (Low) memory.
But it does not allowHigh to send signals after it reads
Low's message. Consider the following implementa-
tion of a mechanism that passes information from Low
to High using only read-down. Low inserts its message
into a low message bu�er. High reads the message out
of the bu�er. However, Low has no indication that the
message has been read. The message sits unchanged
in the bu�er until Low deletes it from the bu�er.

message

High

Low

read-down

Message Buffer

ACK/NAK

Figure 2: Message passing from Low to High using
read-down.

Assuming that no error has occurred in the read-down
procedure, there are two typical ways to achieve this
communication:

� High keeps polling the low bu�er. The disadvan-
tage of this method is that the polling can waste
resources (e.g., CPU time).

� High periodically performs a read-down (e.g., ev-

ery � time). In this case, Low cannot send more
than one message per �. Otherwise, (unless there
is an in�nite bu�er) Low may delete messages
which have not been read by High. If � is too
small, then, like the polling method, this method
will waste resources. If � is too large, then the
message rate will be reduced (i.e., the message
rate of this communication is less than or equal
to 1

�
messages=unit time).

Another drawback of this method is that the low pro-
cess cannot detect if the high process is ready to re-
ceive messages or not. For example, if the high pro-
cess crashes, there is no way for the low process to

detect the situation and stop sending messages (oth-
erwise Low may delete messages that High has not
read yet).

2.3 Blind Write-Up

Blind write-up allows the low level user/process to
write on the high level user's/process's memory. But
it does not allow High to send an ACK/NAK to Low.
We could implement a blind write-up mechanism as
follows in �gure 3.

Low

High

ACK/NAK message

Message Buffer

blind write-up

Figure 3: Message passing from Low to High using
blind write-up.

The low process writes its message into the high mes-
sage bu�er and the high process reads messages from
the bu�er. Since the low process does not know the
condition of the high process, it has to send a message
and hope that the high process receives it. Hence, this
mechanism is unreliable because even if there was an
error during transmission, there is no way for the low
process to discover it and retransmit the message.

3 A Quasi-Secure Low-to-High

Communication Channel

The communication mechanisms presented in the pre-
vious section all have undesirable characteristics. The
read-down and blind write-up methods are unreliable
because there is no way of knowing what happens
to the message after the source sent it. The Pump

that will be introduced in this section is a variation
of the conventional communication protocol that was
introduced in section 2.1. We already mentioned that
the conventional communication protocol has a covert

121

channel. One way to circumvent this timing chan-
nel problem is to limit the ACK/NAK sending rate
to meet the NCSC covert channel capacity guidelines
[Dod] for B3/A1 classes. However, if it is desirable
to send more messages (or ACK/NAK) than what
the NCSC guideline speci�ed, and the communication
channel can handle this tra�c, then this limitation
causes a performance penalty for the communication
system.

The Pump adds random noise to conventional com-
munication methods to reduce the covert channel ca-
pacity. There have been other attempts to reduce tim-
ing channel capacity by introducing random noise to
the system [CoMo91, Gra93, Hu91]. Our approach is
di�erent from the others in the sense that ours pays
almost no performance penalty in the benign situation
(i.e., there is no Trojan horse in the system). Our ap-
proach reduces timing channel capacity when Trojan
horses attempt covert communication.

3.1 A Pump

This process can be used as a communication chan-
nel between any two security levels. Even though the
Pump can reside in either source or destination, in
this paper we assume that the Pump resides in the
security level of the destination. This Pump needs
to be trusted in the sense that the system designer
has an assurance that the Pump will do only what it
is supposed to do (i.e., the Pump sends to Low only
ACK/NAK and does not repeat High's message). In
a sense, the Pump is blocking any message ow from
the destination process to the source process.

In our model of communication between high (des-
tination) and low (source) processes, the location (i.e.,
either in the same computer or in two separate com-
puters) of these two processes is not important.

The Pump has 3 basic components which work in
conjunction with the (Pump independent) low and
high processes to allow data to be passed from Low
to High. In actuality, there is a subtle violation of
Bell-LaPadula which allows a covert channel to exist.
We will examine this later in the paper.

The components are the the trusted low bu�er
(TLB), the trusted high bu�er (THB), and a com-
munication bu�er (CB). The Pump works as follows:

Low Process

High Process

The Pump

buffer
Communication

buffer

buffer

ACK/NAK

ACK/NAK

messages

messages

Low
Trusted

High
Trusted

Figure 4: Message passing from Low to High using
the Pump.

Low process: (Exterior to the Pump)

Low sends a message to the TLB and waits for an
ACK from the TLB. Once an ACK arrives, then
the message is removed from the low process (i.e.,
do the garbage collection) and a new message is
sent (i.e., if the low process receives NAK or no
response (i.e., time-out) then it will retransmit
the same message). Note that Low may prepare
a new message while Lowwaits for an ACK/NAK.

Trusted low bu�er:

When a message arrives from the low process, the
TLB inserts the message in the CB and then sends
an ACK to the low process if the insertion is suc-
cessful (i.e., there is space in the CB). Since the
Pump is con�gured as a high process, this sending
ACK violates the Bell-LaPadula constraints and
a Trojan horse can exploit this procedure.

High process: (Exterior to the Pump)

When High receives a message from the THB, it
stores the message and then sends an ACK/NAK
to the THB.

Trusted high bu�er:

This process sends a message to the high process
if there is a message in the CB. Once an ACK
arrives from the high process, the message is re-
moved from the CB. If the THB receives NAK or
no response (i.e., time-out) then it will retransmit
the same message. Since the Pump is con�gured
as a high process, this does not violate the Bell-
LaPadula constraints.

122

Communication Bu�er:

This is a regular FIFO bu�er whose length is n.
This bu�er is shared between the TLB and the
THB. It is also possible for the the TLB and the
THB to learn certain statistical information from
the CB (e.g., the average response time of the
high process).

It is easy to see that any process that communicates
with the Pump can collect garbage because this pro-
cess receives ACK. Also, any communication with the
Pump is reliable due to ACK/NAK being sent. If the
sender receives either NAK or is timed out, then it
will retransmit the same message. In the following,
we show other desirable features of the Pump.
This communication method is also recoverable if

we implement the CB in non-volatile storage and each
message has an associated message number. We con-
sider the following four cases:

case 1: The system crashes after Low sends a mes-

sage to the Pump but before the Pump receives

it. Since Low never receives an ACK, it will re-
send the message as the system recovers.

case 2: The system crashes after the Pump receives

a message but before Low receives an ACK. Since
Low never receives an ACK, it will resend the
message as the system recovers. However, the
Pump will notice that the message has already
been received because of the message number.
Hence, it will just send an ACK.

case 3: The system crashes after the Pump sends a

message but before High receives it. This is simi-
lar to case 1.

case 4: The system crashes after High receives a mes-

sage but before the Pump receives an ACK. This
is similar to case 2.

Note that there may be many destination processes
and many source processes that use the same Pump.
However, in this paper, we just consider the case of one
source process and one destination process which will
have the worst case covert channel capacity. We have
been denoting these two processes of interest as simply
High and Low. Further, when we perform channel
capacity analysis we assume that there are no NAK's.
This makes the analysis easier but does not a�ect the
capacity bounds.
The time from when Low sends its i-th message to

the TLB until it receives an ACK back from the TLB

is given by Li. If the CB has space on it when the
TLB receives the i-th message from Low then Li is
deterministic and simply equal to the �xed communi-
cation overhead time Ol. If the CB is full then the
response time Li is probabilistic and is given by the
random variable S added onto the overhead Ol. S is
the amount of time that the TLB has to wait, when
the CB is full, for High to remove a message (by send-
ing an ACK to the THB) so that the TLB can insert
its i-th message into the CB. Note that it is possible
for the TLB to attempt to insert a message into the
full CB after the THB has sent a message to High and
while the THB is still waiting for an ACK back from
High. Therefore, the S values are less than or equal
to the amount of time that the THB waits (the High
ACK time). The distribution for S can be discrete,
continuous, or mixed. Without loss of generality, we
assume in this paper that it is discrete. Note, it is the
ability of a Trojan horse to a�ect S that gives rise to
a covert timing channel. In summary,

Li =

�
Ol; if CB;;
Ol + S; if CBf:

where CB; represents the event that the CB has
space on it, whereas CBf represents the event that
the CB is full. By using conditional probability we
can summarize the above by expressing the behav-
ior of Li, when the CB has space for a message, by
P (Li � t j CB;) = P (Ol � t), which is 1 for t � Ol,
(i.e. this is just a univalued discrete random variable),
and the behavior of Li, when the CB is full, is given by
P (Li � t j CBf) = P (S + Ol � t). Admittedly, this
is a rather cumbersome way of looking at such simple
discrete random variables (one would normally look
at mass functions instead of distribution functions).
However, in section 4, when we adjust the distribu-
tion Li, it is advantageous to view probabilities in this
continuous manner.

3.2 Covert Timing Channels

A Trojan horse can exploit the present situation and
create a covert timing channel. The Trojan horse con-
trols when Low (via the low Trojan horse) sends a
message and controls when High (via the high Trojan
horse) sends an ACK back to the THB.

� The low Trojan horse �lls the CB; this is done
by having the high Trojan horse not remove mes-
sages from the CB. Now that the CB is full, there

123

is a noiseless covert timing channel that exists be-
tween Low and High. Furthermore, this channel
exists as long as the CB is full.

� Now Low sends a message to the TLB. The TLB
cannot send an ACK back to Low until a spot
opens up on the CB. This is totally in the control
of High. We assume that � � Ol is the smallest
amount of time that High can remove a message
from the Pump and for Low to get an ACK after
it has sent a message to the TLB. Since the high
Trojan horse knows the size of the CB (i.e., n)
and how fast the low Trojan horse can send a
message, High knows that Low has �lled the CB
and has just sent a new message to the TLB. If
Low gets an ACK at time �, Low interprets the
signal as a zero. We further assume that 2� is
the next amount of time that High can remove an
item from the CB and for Low to get an ACK.
Therefore if the ACK to Low is at 2� then Low
will interpret the symbol being passed by High as
a one. Since every time Low receives an ACK,
the CB is full again, and Low can then attempt
to insert its new message and High can send the
binary symbols again. There is no noise in this
channel.

We are looking at a worst case scenario with this
example. High will try to send symbols as quickly
as possible, hence the time values of � and 2�. The
time units of our system are such that � is an integer,
i.e., � is an integer number of system clock ticks. The
channel capacity of this channel is given by

C = lim sup
k!1

logN (k)

k
bits per clock tick

Where the logarithms are base two and N (k) is the
number of distinct sequences of zeroes and ones that
High can send that take a total of time k. It can be
shown [Sh48, MiMo93, Mo93] that C = log!, where !
is the positive root of x2��x��1 = 0. The polynomial
arises from the recurrence relation N (k) = N (k� �)+
N (k � 2�). By changing variables and letting y = x�

we see that !� is the positive root of y2 � y � 1 = 0.

Therefore, ! = (1+
p
5

2
)1=�, so C = ��1 log 1+

p
5

2
.

In fact, there is nothing to limit the communica-
tion channel to just two symbols. High could send
the symbols fb1; b2; : : : ; bzg by having the symbol bi
correspond to a response time of i�. In this case,
the capacity is log! where ! is the positive root of
xz� � x(z�1)� � � � � � x� 1. As the number of distinct

symbols increase from 2 to1, it can be shown that the

positive root monotonically increases from (1+
p
5

2
)1=�

to 21=�, hence the capacity monotonically increases

from ��1 log(1+
p
5

2
) to ��1. (The mathematical de-

tails to the above can be found in [Mo93].) Hence, by
increasing the number of symbols from 2 to an in�-
nite amount we can achieve an almost 50% increase in
channel capacity. Of course, in practical usage, there
is a limit to how long High will delay a response to
Low, so the capacity of ��1 can be interpreted as a
worst case upper limit. It is this capacity that we
shall attempt to \beat" by the other means that we
will discuss in the rest of the paper. We summarize
this by (since Ol � �)

Worst Case Capacity Bound =
1

Ol

bits per clock tick.

(1)
Note that at present we have not added any security
techniques to the Pump. When we do add these tech-
niques we will see that we can substantially lower the
channel capacity.

3.3 Performance/Security Goals

There are three cases that can limit the performance
of this communication channel:

1. Low is the bottleneck. For example, the message
sending rate of Low is slower than the rate that
the Pump and High pass and receive messages. If
this happens, the CB in the Pump can never be
full. Consequently, no covert channel can exist.

2. The Pump is the bottleneck. For example, the
message passing rate of the Pump is slower than
the rate at which Low and High send and receive
messages. If this happens, the CB in the Pump
can be full. However, the time that Low receives
ACKs does not reect the response time of High
because the ACK time from High is always faster
than the ACK time to Low. Hence, no covert
channel exists.

3. High can be the bottleneck. For example, the
message receiving rate of High can be lower than
the rate at which Low and the Pump can send
and pass messages. If this happens, assuming that
High and Low are Trojan horses, a covert timing
channel can exist.

The use of better software or hardware may solve the
�rst or the second case, but this is the beyond the

124

scope of this paper. This paper focuses on the third
case, where a covert timing channel can exist. Hence,
the rest of this paper assumes that High is the bottle-
neck of this communication channel and Low and the
Pump can send and pass messages much faster than
High accepts them.
We wish to have a performance/security require-

ment that involves three goals. The �rst two attempt
to mitigate the capacity of a timing channel, as de-
scribed above, and the third goal attempts to make
e�cient use of system resources.

1. Prevent the CB from becoming/staying full.

2. Minimize the inuence of High's actions on Li.

3. Minimize system resources waiting in an idle
state. For example, we would like to avoid the
situation such as the Pump not sending an ACK,
even though there is a space in the CB and Low
is ready to send next message, in order to prevent
a covert channel.

Often, in the security community, we are faced with
making a trade-o� between security and performance.
We propose a method that approximately achieves all
the above goals. We will do this by modifying the
distribution Li, but �rst let us formalize our perfor-
mance/security requirement as follows.
Let �Li denote the mean (expectation) of the random

variable Li. When Low submits its i-th message to the
TLB, we consider the last m messages that High has
ACK'ed. We take the average of these m ACK times
and denote it by �Hmi

. The term �Hmi
is a moving av-

erage and the window size m should be chosen large
enough to be somewhat insensitive to individual uc-
tuations of High but yet still able to reect the current
system workload.

We state our performance/security requirement as
follows

�Li � �Hmi
: (2)

If we can get our system to obey Eq. (2) then we
see that the CB is used in an e�cient manner and any
attempts of a Trojan horse speeding up Low and slow-
ing down High, in order for the CB to become/stay
full are mitigated by the approximate equality of the
two \averages" in Eq. (2). (Note that �Li is an actual
mean, whereas �Hmi

is a numerical moving average.)
More precisely, let us look at the two cases where Eq.
(2) is not met.

Case 1: �Li > �Hmi

Since we assume that Low and the Pump can handle
messages faster than High, the above condition im-
plies that the Pump intentionally delays the ACK for
message i, possibly to prevent covert channels. If this
holds then, on the average, High is removing messages
from the CB faster than Low puts them into the CB.
This will result in High waiting for messages and Low
waiting for an ACK to send the next message. In this
case, there will be no covert channel. However we are
wasting resources in the sense that the Pump is not
fully utilized, and High and Low wait for either mes-
sages or ACKs.

Case 2: �Li < �Hmi

If this holds then, on the average, Low is sending mes-
sages to the bu�er faster than High removes them.
Unless the CB size is in�nite, this will result in the
CB becoming full. Once the CB is full then Li be-
comes the same as High's response time. Also, if the
CB becomes full, then a covert timing channel can be
exploited as discussed previously.

Therefore, the only option left to us that both de-
creases exploitation of a covert timing channel and at
the same time does not waste resources is Eq. (2).
Note that we are allowing a slight \fudge" factor in
our performance requirement due to practicality, and
we use an approximate equality. The degree of \fudge"
will be determined in practice.

Note that the system which obeys Eq. (2) pays
almost no performance penalty in the benign situa-
tion. However, once Trojan horses decide to slow down
High's response, to send signals to Low, then �Hmi

will be increased and the capacity of the covert timing
channel will be decreased. A system that comes close
to meeting Eq. (2) assures one that the system is not
a secure brick or a leaky vault.

4 Noisy Channels

The system which has a covert timing channel can non-
theless be utilized if we understand the nature of the
channel and make the channel noisy enough so that the
channel capacity is less than a certain threshold. In
this section, we introduce random noise to the Pump
by modifying the TLB's response time to Low and an-
alyze the covert channel capacities. The modi�cation
of the TLB's response time will be done by adding a
probabilistic e�ect to Li. Now, the ACK time to Low

125

is given by

ACK time = Old Li +A

where A is a random variable with mean �A. For the
rest of this paper, we will denote this modi�ed ACK
time by Li. In the benign case that we described in
section 3.1, A(t) � 0. A must be chosen to increase
security without killing performance. By conditioning
on whether or not the CB is full we obtain

P (Li � t) = P (Li � t j CB;)P (CB;) +

P (Li � t j CBf)P (CBf)
(3)

By setting P (CBf) = � and noting that we have
P (Li � t j CBf) =P

k P (Li � t j CBf; S = sk)P (S = sk j CBf), since
the events fS = skg are disjoint, we see that Eq. (3)
simpli�es to

P (Li � t) = P (Li � t j CB;) (1� �) +X
k

P (Li � t j CBf; S = sk)P (S = sk j CBf) �

(4)

Since, by de�nition S is only de�ned when the CB is
full, Eq. (4) reduces to

P (Li � t) = (1� �)P (Li � t j CB;) +

�
X
k

P (Li � t j S = sk)pk
(5)

However, P (Li � t j CB;) is just P (Ol + A � t) =
P (A � t �Ol) and P (Li � t j S = sk) = P (sk + Ol +
A � t) = P (A � t� sk �Ol).
By taking the derivative of both sides of Eq. (5)

and denoting the density function of Li by fLi
(t) we

arrive3 at

fLi
(t) = (1� �)fA(t� Ol) + �

X
k

pkfA(t� sk �Ol)

The mean wait for Low is

�Li =Z 1
�1

t

(1� �)fA(t� Ol) + �

X
k

pkfA(t � sk � Ol)

!
dt

(6)

3In general, if c is a constant, we have that P (c + A � t) =

P (A � t � c) =
R
t�c

�1

dA, where dA is the measure associated

with the random variableA. Note that d

dt
P (c+A � t) = fA(t�

c), if dA = fA(�)d� . (We assume that the density function

fA(�) of A always exists.)

We denote the mean of S, which is
P

k pksk, by �s.
By simplifying Eq. (6) we obtain4

�Li = (1� �)(�A+ Ol) + �
X
k

pk(�A + sk + Ol)

= (1� �)(�A+ Ol) + � �A + �
X
k

pk(sk + Ol)

= (1� �)(�A+ Ol) + �(�A + �s +Ol)

and �nally
�Li = �A+Ol + ��s (7)

Eq. (7) intuitively makes sense. If the CB is never
full (� = 0) then �Li = �A+Ol. If the CB is always full
(� = 1) then �Li = �A + �s + Ol.
We wish to choose A so that Eq. (2) is satis�ed.

This forces upon us the condition that

�A = �Hmi
�Ol � ��s (8)

Note that some �xed overhead, Oh, is already included
in �Hmi

. If for some reason �A � 0, we instead default
�A to a small value.
In the following sections, a speci�c random variable

A will be chosen. Based on this A, the covert channel
capacity of the Pump will be analyzed.

4.1 Choice of a Random Variable

We see, from the above discussion, that is it possible
to add noise, via the random variable A, to Li so that
the performance/security requirement is met. We will
now discuss an explicit choice of A and see how it
a�ects the ability of High to communicate covertly,
over a timing channel, to Low. The density function
of the random variable that will be chosen should have
the following two properties:

1. The mean of this random variable should be con-

trollable. The density function should be sensitive
to system feedback, in order to meet the perfor-
mance/security requirement.

2. There should be no upper bound. If the sup-
port of the density function has an upper bound,
then the upper bound can be exploited by Trojan
horses. For example, if the uniform distribution is
chosen, then A will be uniformly distributed be-
tween Ol and 2 �A+Ol. Hence, if the high Trojan
horse decides to send a signal by sending an ACK
after 2 �A+Ol, then the signal is delivered without
any noise.

4
R
1

�1

tfA(t� c)dt =
R
1

�1

(u+ c)fA(u)du = �A+ c

126

Even though there are many random variables that
satisfy the above properties we have chosen the expo-
nential distribution because the capacity of the covert
channel is relatively easy to analyze (due to the rela-
tively simple density function). In fact, the exponen-
tial distribution has been well studied in other security
work [Mo91, MoMi92a, MoMi92b] and is the basis of
much work in queuing theory. The following is an ac-
tual implementation of the exponential distribution in
the Pump.

5 A Noisy Scheme

First, we would like to consider a scheme that pays
very little performance penalty. (By this we mean de-
viation from Eq. (2), erring on the side of system
performance more than that of security).
To make this channel noisy, we consider the follow-

ing scheme:

� The CB of the Pump computes �Hmi
as a moving

average for the last m values of High's ACK time
to the THB.

� The distribution for A is given by the exponential
random variable with density function

f(t) =

�
�e��t; if t � 0;
0; otherwise:

This means that when the CB has space on it, Li
has a conditional density function given by

f(t) =

�
�e��(t�Ol); if t � Ol;

0; otherwise:

and when the CB is full and S = sk, the condi-
tional density is

f(t) =

�
�e��(t�(sk+Ol)); if t � sk +Ol;

0; otherwise:

These above conditional densities are obtained by tak-
ing the convolution of the exponential density with a
density function of the from �(t��), � a constant (see
footnote 3). We refer to any random variable that has
a density function of the form �e��(t��); t � � as a
modi�ed exponential distribution with shift �. The in-
tuition behind the modi�ed exponential distribution is
that it decays just like the exponential density; how-
ever, the decay starts at � instead of 0. Of course
a modi�ed exponential distribution no longer has the

(de�ning) memoryless property of the exponential dis-
tribution.
Note that the mean of A is 1=� which we set, from

Eq. (8), equal to �Hmi
�Ol���s. Of course in practice

we would eventually have to bound the tail on the
exponential distribution but this bound need not be
a function of its mean, as it must be for the uniform
distribution. So there is eventually a time out, perhaps
quite large, such that Low �nally does receive an ACK.
This prevents the existence of a (theoretically possible)
dangling message.

5.1 Analysis of Timing Channel Ca-

pacity

We see that our system satis�es the perfor-
mance/security requirement. However it does much
more. Our system is controllable due to the feedback
to Li, via the ability to change �, due to the changes
in �Hmi

. Assume, for example, that High wishes to
covertly signal Low. There are two methods; one is
the noiseless channel approach as described in section
3.2 and the other is the noisy channel approach. Let
us try to get some quantitative bounds on the capac-
ity for both methods. We assume in this analysis that
m � n. In future work, we hope to remove this restric-
tion and see if even further capacity reductions can be
obtained.
As before High will attempt to signal Low by a�ect-

ing the values of Li. Say High tries the strategy that
we discussed earlier of letting the CB get full and then
removing messages within time � or 2�. Two factors
make this an unfeasible Trojan horse strategy. The
�rst is that High cannot get the CB full and keep
it full without a severe time penalty being enacted
upon Li. This is because for the CB to become full,
High must be removing messages at a slower rate than
Low is getting ACKs back from the TLB. But after a
certain number of messages the slow rate of High is
manifested by forcing Li to also slow down due to the
moving average construction of �. There are three ba-
sic problems with this approach. One is the noise that
is involved when High tries to send a symbol to Low.
The second is the time involved in sending the sym-
bol due to large delays by High necessitated by High
trying to send a symbol with as little noise as possi-
ble. The third is synchronization problems between
High and Low. By this we mean the ability of Low to
di�erentiate, via Li values or the number of messages
ACK'ed, between when High is getting ready to send
a message (i.e., letting the CB get full) and when Li is

127

the actual symbol being passed by High. Let us con-
sider three possible exploitations below.

Exploitation strategy 1:

High acts quickly (ACK time = �) m times. This
has the e�ect of lowering the moving average and thus
speeding up the Li values. Now High does not send
an ACK for t = m� in the hopes of Low �lling the CB.
When Low �nally does receive this delayed Li value
it is interpreted as a synchronization signal from High
to Low | This means that the next Li value is to be
interpreted as a symbol being sent by High. The next
High ACK time, via the S value chosen by High, is
chosen so as to send a symbol to Low. However, due to
the probabilistic nature of Li and the fact that the CB
may not even be full, this symbol is quite ambiguous.
Note that now Li is large because of the previous High
delay of t = m�.

High wishes for the CB to become full again so that
it can again send a symbol with as little noise as pos-
sible, so High repeats the above process of lowering Li
by acting quickly and then delaying and �nally send-
ing a symbol. We see that if a symbol is sent noise-
lessly it would take at least t = (2m + 1)�. Therefore
C < 1

(2m+1)�
.

Exploitation strategy 2:

Instead of High repeating the process of | �lling the
CB, delaying, and �lling the CB again | after High
sends the �rst symbol, it continues to send symbols.
However, if High ACKs a message quickly to try to
send Low small S values it will, in fact, end up only
emptying out the CB and thus will not be able to
send Low di�erent S values. This is because the Li
values are, at this point, very large due to the e�ect
of the previous large delay by High. Therefore, High
must wait at least t = m� and then the additional sk
times to attempt to send Low a symbol that is not too
noisy. However, High's waiting this long to send an
ACK has the side e�ect of keeping the moving aver-
age large. Therefore, all High is doing is sending noisy
symbols in a very slow manner. Therefore, a worst
case analysis would still have C < 1=m�.

Exploitation strategy 3:

High could attempt to send information to Low by
simply a�ecting the moving average and having Low
interpret its response times without High trying to
make the CB full. A full analysis of this scenario is
quite complicated and involves channels with contin-
uous outputs (waveform analysis) which, up to now,

have not been studied by the security community. Also
there are severe practical coding issues when one quan-
tizes the output space into many symbols. So even
though a true capacity upper bound could be obtained,
it would be impossible to build the proper code. So
from a practical standpoint one could study the capac-
ity just through �nite decoding schemes (this is not to
say that one should not see how the capacities di�er).
We can make some qualitative statements about the
channel capacity based on present techniques. Low's
ACK time is a modi�ed exponential distribution with
shift Ol. All High can do is to alter the mean, 1=�+Ol.
Let us look at a simplifying example where High tries
to send a symbol to Low by varying � between two
values. Low receives a response and wants to de-
cide whether it came from a modi�ed exponential dis-
tribution with mean 1=�1 + Ol or whether it came
from a modi�ed exponential distribution with mean
1=�2 + Ol. If �1 � �2 then it is hard to make this
decision and the symbol is very noisy. To make the
symbol less noisy would require High to enlarge the
di�erence between �1 and �2; this, however, would
also increase the time that Low receives the symbol
and in fact increase the time that Low receives future
symbols due to the moving average construction of �.
Therefore we decrease the noise with which symbols
are sent only by penalizing the time cost with which
they are sent. Between the �delity criterion of the
symbols forcing a large di�erence between the � val-
ues and the fact that the moving average moderates
any change of High by a factor of 1=m, we feel that
C < 1=m� is still a valid worst case bound.
In fact one could use a combination of the above

exploitation strategies. However, we do not see any
order of magnitude improvement by doing this.
We see that the size of the CB, n, is very important

to the security of the channel. In the future, through
both analytic techniques and simulations, we hope to
obtain rules of thumb that a system designer could
use to lower the capacity to within speci�ed bounds.
As in section 3.2, since Ol � �, and m � n, being
conservative we may state

Worst Case Capacity Bound with Noise added to the Pump

= 1
nOl

(9)

Thus far, the mean of the exponential distribution
was a function of �Hmi

. However, if one wishes to re-
duce the channel capacity further, � can be chosen not
only as a function of �Hmi

but also as a function of the

128

current state of the CB. For example, if the CB is 80%
full then � may be a function of 2 �Hmi

, if the CB is
90% full then � may be a function of 3 �Hmi

, and so
on. This will have the e�ect of slowing down Li when
High tries to send covert signals with very little noise.

6 Summary

In this paper, we introduced the Pump. It is a generic
communication mechanism in the sense that it can
be used to pass messages between any two di�erent
security levels. The Pump has all desirable features
(i.e., reliability, reasonable performance, garbage col-
lectibility, recoverability, and practicality) of conven-
tional communication mechanisms. At the same time,
the covert channel capacity of the Pump is less than 1

n

times that of the conventional communication mecha-
nisms (by comparing Eq. (1) to Eq. (9)), where n is
the bu�er size.
The result that is presented in this paper is the worst

case channel capacity. Our future plans are: (1) to
tighten the bound of covert channel capacity, and (2)
to provide the covert channel capacity as a function of
n and m so that the system designer can choose the
values, n and m, according to his/her security require-
ments.

7 Acknowledgements

We wish to thank Ruth Heilizer, Carl Landwehr, and
John McLean for their time and helpful suggestions.

References

[BeL76] Bell, D. E., and LaPadula, L. J. Secure com-
puter systems: Uni�ed exposition and multics in-
terpretation. The Mitre Corp. (1976).

[CoMo91] Costich, O. and Moskowitz, I. S. Analysis
of a storage channel in the two-phase commit pro-
tocol. The Computer Security Foundations Work-
shop 4 (1991).

[Gra93] Gray, J. W. On introducing noise into the
bus-contention channel. IEEE Symposium on Re-
search in Security and Privacy (1993).

[Hu91] Hu, W. M. Reducing timing channels with
fuzzy time. IEEE Symposium on Research in Se-
curity and Privacy (1991).

[MiMo93] Miller, A. R. , and Moskowitz I.S. Reduc-
tion of a Class of Fox-Wright Psi Functions for
Certain Rational Parameters. Submitted for pub-
lication (1993).

[Mo91] Moskowitz, I. S. Variable noise e�ects upon a
simple timing channel. IEEE Symposium on Re-
search in Security and Privacy (1991).

[MoMi92a] Moskowitz, I. S., and Miller, A. R. The in-
uence of delay upon an idealized channel's band-
width. IEEE Symposium on Research in Security
and Privacy (1992).

[MoMi92b] Moskowitz, I. S., and Miller, A. R. The
channel capacity of a certain noisy timing chan-
nel. IEEE Transactions on Information Theory,
38, 4 (1992)

[Mo93] Moskowitz, I. S. and Miller, A. R. Simple Tim-
ing Channels. Preprint (1993).

[Dod] Department of Defense, National Computer Se-
curity. Trusted Computer System Evaluation Cri-
teria 5200.28-STD (1985).

[Sh48] Shannon, C., and Weaver, W. The mathemati-
cal theory of communication.University of Illinois
Press (1948).

[Sch77] Schwartz, M. Computer-communication net-
work design and analysis. Prentice Hall (1977).

129

